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MSD in correlated systems

Here we derive the general expression for the MSD when there are temporal correlations. We use the derivation by Schüring51.
To start with, we consider the “MSD” as defined by Shalchi52

〈
rir j
〉
=
∫ t

t0

∫ t

t0

〈
vi(τ)v j(ξ )

〉
dξ dτ

which in LGCA notation are written as

〈
rir j
〉
=

k

∑
n=1

k

∑
m=1

v2
τ

2 〈[êi ·~cin ] [ê j ·~cim ]
〉
, (S1)

where êx and êy are the two orthonormal unit vectors in Cartesian coordinates. In 2D the diagonal elements are given by:

〈
r2

x
〉
=

k

∑
i=1

k

∑
j=1

v2
τ

2 〈cos(θi)cos(θ j)
〉

=
k

∑
i=1

k

∑
j=1

v2τ2

2
〈
cos(θi−θ j)+ cos(θi +θ j)

〉 (S2)

and

〈
r2

y
〉
=

k

∑
i=1

k

∑
j=1

v2
τ

2 〈sin(θi)sin(θ j)
〉

=
k

∑
i=1

k

∑
j=1

v2τ2

2
〈
cos(θi−θ j)− cos(θi +θ j)

〉
,

(S3)

where θk = arg
[
~cik

]
. Adding them up gives the MSD

〈
r2〉= 〈r2

x
〉
+
〈
r2

y
〉
=

k

∑
i=1

k

∑
j=1

v2
τ

2 〈cos(θi−θ j)
〉
, (S4)

which is just a Taylor-Green-Kubo formula47, 54. When i = j we have cos(θi−θ j) = 1, so by taking these terms out of the sum
we get

〈
r2〉= kv2

τ
2 +

k

∑
i=1

k

∑
j=1

v2
τ

2 〈cos(θi−θ j)
〉
(1−δi j). (S5)

On the one hand v2τ2 = ε2 and on the other ε2 = 2dDτ , so using these relations on the first term on the right hand side yields

〈
r2〉= 2dDkτ +

k

∑
i=1

k

∑
j=1

v2
τ

2 〈cos(θi−θ j)
〉
(1−δi j). (S6)

Because the cosine is an even function cos(θi−θ j) = cos(θ j−θi), which means that we are adding two identical terms for
every i 6= j (this condition is already satisfied due to the Kronecker delta). This situation allows us to rewrite the limits of the
interior sum if we take care of counting each term twice. Furthermore, using trigonometric identities it is possible to expand the
cosine on the right hand side,

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2 〈cos(θi)cos(θ j)
〉
(1−δi j)

+2
k

∑
i=1

k

∑
j=i

v2
τ

2 〈sin(θi)sin(θ j)
〉
(1−δi j).

(S7)
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If the orientations of the particle are completely uncorrelated from one another, then it is possible to write the sums on the right
as

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2 〈cos(θi)〉
〈
cos(θ j)

〉
(1−δi j)

+2
k

∑
i=1

k

∑
j=i

v2
τ

2 〈sin(θi)〉
〈
sin(θ j)

〉
(1−δi j).

(S8)

If the reorientation probabilities are even functions of the angle θk, then we have that 〈sin(θi)〉= 0, and so the second sum on
the right hand side disappears leaving

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2 〈cos(θi)〉
〈
cos(θ j)

〉
(1−δi j). (S9)

We can choose our coordinate system such that θ0 = 0 without loss of generality. With this choice of the coordinate system, we
can rewrite the MSD as

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2 〈cos(θi−θ0)〉
〈
cos(θ j−θ0)

〉
(1−δi j). (S10)

Using the definition of the VACF this becomes

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2g(i)g( j)(1−δi j). (S11)

Expanding the difference on the right hand side we get

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2g(i)g( j)−2
k

∑
i=1

k

∑
j=i

v2
τ

2g(i)g( j)δi j. (S12)

The last sum on the right hand side can be simplified, so we get

〈
r2〉= 2dDkτ +2

k

∑
i=1

k

∑
j=i

v2
τ

2g(i)g( j)−2
k

∑
i=1

v2
τ

2g2(i). (S13)

Finally, using the relation between the intantaneous particle velocity v and the diffusion constant in the random walk limit Drw,
and reordering terms, we obtain

〈
r2〉= 2dDrw

[
kτ−2

k

∑
i=1

g2(i)τ

]
+2v2

k

∑
i=1

k

∑
j=i

g(i)g( j)τ2. (S14)

VACF and MSD derivation in the persistent random walk
First we analytically derive the expected form of the VACF for a single particle in an LGCA where the lattice is a 2D square
lattice.

VACF
As mentioned before, the orientation probability is given by Eq. (10). The VACF is formally defined as g(t) = 〈~v0 ·~vt〉, where
v0 and vt are the velocities of the particle at time 0 and t, respectively. Using this definition, we can calculate the VACF of a
stochastically moving particle as

g(t) =
∫

P(~v, t)(~v0 ·~v)d~v,

where P(~v, t) is the probability of the particle having a velocity~v at time t.
In an LGCA particle velocities are given by the velocity channels they are located in, which belong to a finite set of unit

vectors depending on the lattice dimension and geometry. Furthermore, time is also discrete with time steps of length τ such
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that at time step k time has elapsed by kτ . We can then rewrite the definition of the velocity autocorrelation in the case of an
LGCA in the following way47:

g(t) = 〈~v0 ·~vt〉=
b

∑
i=1

Pik,k
[
~ci0 ·~cik

]
, (S15)

where~ci0 is the orientation of the particle at time step k = 0 and~cik is the orientation of the particle at time step k. To calculate
the VACF, we start by defining a function as:

H =−~cik−1 ·~cik , (S16)

where~cik is the particle orientation at time step k. Having defined this function, we can rewrite Eq. (10) as follows:

Pik,k =
e−βH(~cik ,k)

Z
, (S17)

where the partition function is defined as

Z = ∑
ik

e−βH(~cik ,k). (S18)

The expected value of the function is given by

〈H〉=
〈
−~cik−1 ·~cik

〉
, (S19)

that is, the energy of the system is the single-step correlation. Due to the distribution of the reorientation probabilites the total
energy can be calculated by the well-known relation

〈H〉=− ∂

∂β
lnZ. (S20)

Using the last two equations, we get an expression for the single step correlation:

〈
~cik−1 ·~cik

〉
=

∂

∂β
lnZ. (S21)

In this single-particle model, the partition function can be easily calculated. For a 2D square lattice the partition function reads

Z = 2 [1+ cosh(β )] . (S22)

Substituting Supplementary Eq. (S22) into Supplementary Eq. (S21), we have

〈
~cik−1 ·~cik

〉
=

∂

∂β
{ln(2)+ ln [1+ cosh(β )]}

=
sinh(β )

1+ cosh(β )
= tanh

(
β

2

)
.

(S23)

The particle orientations~ci are normalized vectors. This allows us to rewrite the single step correlation as〈
~cik−1 ·~cik

〉
= 〈cos(θk−θk−1)〉 , (S24)

and the VACF as

g(k) = 〈cos(θk−θ0)〉 , (S25)

where θk = arg [~ck]. Supplemenary Eq. (S25) can be rewritten by adding zeroes in the following way:

g(k) = 〈cos(θk−θ0)〉=

〈
cos

[
θk−θ0 +

k−1

∑
i=1

(θi−θi)

]〉
,
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which after rearranging terms, has the form

g(k) =

〈
cos

(
k

∑
i=1

θi−θi−1

)〉
. (S26)

Using trigonometric identities and the linearity of the expected value operator we can expand this expression to

g(k) =

〈
k

∏
i=1

cos(θi−θi−1)

〉
+ f {〈cos(θn−θn−1)sin(θm−θm−1)〉} ,

(S27)

where f is a sum of expected values of products of sines and cosines. Because the model is Markovian, the i-th orientation is
only correlated with the (i−1)-th orientation. This allows us to write

g(k) =
k

∏
i=1
〈cos(θi−θi−1)〉

+ f {〈cos(θn−θn−1)〉〈sin(θm−θm−1)〉} .
(S28)

Now, because the reorientation probabilities Eq. (10) are even functions with respect to θk = arg [~c(k)], the expected values
become

〈sin(θm−θm−1)〉= 0,

which in turn implies
f {〈cos(θn−θn−1)〉〈sin(θm−θm−1)〉}= 0.

Using these relations we find that the VACF is given by

g(k) =
k

∏
i=1
〈cos(θi−θi−1)〉 . (S29)

Using Supplementary Eqs. (S23) and (S24) in Supplementary Eq. (S29) yields

g(k) =
[

tanh
(

β

2

)]k

, (S30)

which can be written as

g(k) = eαk, (S31)

if we define the exponent α as

α = ln
[

tanh
(

β

2

)]
. (S32)

The exponent α depends on the lattice dimension and geometry, as follows:

• In 1D the exponent is given by:

α = ln [tanh(β )] . (S33)

• In 2D with a triangular lattice the exponent is:

α = ln

(
e

β

2 − e−β

e−β +2e
β

2

)
. (S34)

• In 2D with a square lattice the exponent is given by:

α = ln
[

tanh
(

β

2

)]
. (S35)
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• In 2D with an hexagonal lattice it takes the form:

α = ln

 2sinh
(

3β

4

)
cosh

(
β

4

)
cosh(β )+2cosh

(
β

2

)
 . (S36)

• With a cubic 3D lattice the exponent reads:

α = ln
[

sinh(β )
cosh(β )+2

]
. (S37)

Mean square displacement
To calculate the MSD of particles performing persistent random walks, we start with Supplementary Eqs. (S6) and (S24) and
rewrite the sum limits taking into account that the cosine is an even function to obtain

〈
r2〉= 2dDkτ +2v2

k

∑
n=1

k

∑
m=n
〈~cin ·~cim〉τ2(1−δnm). (S38)

The expected value on the right hand side is the (m−n)-step correlation. From the previous VACF calculation we know that in
the Markovian model

〈~cin ·~cim〉 := g(m−n) =
[

tanh
(

β

2

)]|m−n|
, (S39)

which can be substituted in the expression of the MSD to obtain

〈
r2〉= 2dDkτ +2v2

k

∑
n=1

k

∑
m=n

g(m−n)τ2(1−δnm). (S40)

Because the sums on the right hand side only depend on the interval length | n−m | and not on the specific values of the indices
n and m we can replace both sums by a sum over all posible interval lengths. There are k− j ways to divide an interval of k
time steps (because the sums start from n = 1) into intervals of size j. Taking all into account, the MSD becomes

〈
r2〉= 2dDkτ +2v2

k

∑
j=1

(k− j)g( j)τ2, (S41)

which can also be written as 〈
r2〉= 2dDkτ +2v2

k

∑
j=1

(k− j)e jα
τ

2,

where α is given by Supplementary Eq. (S32). We now distribute the two multiplying time steps τ on the second term on the
right hand side, and multiply by one the exponent of the exponential function thus leaving it unchanged:

〈
r2〉= 2dDkτ +2v2

k

∑
j=1

(kτ− jτ)e
α
τ

jτ
τ.

We now use the definitions of the diffusion coefficient and the particle speed to obtain the following expression for the time step
length:

τ =
2dD
v2 ,

and use it to substitute for τ on the denominator of the exponent

〈
r2〉= 2dDkτ +2v2

k

∑
j=1

(kτ− jτ)e
v2α

2dD jτ
τ.
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VACF in homogeneous Markovian models
We will now consider a general Markovian model for a single moving particle. The model is then a Markov chain of particle
orientations, i.e. the particle can transition between different orientations at each time step.

Definition 1. The state space of the Markov chain is E = {~c0,~c±1, · · · ,~c±n, · · · ,~cN}, where the 2N different states are given by

~cn =
(

cos
(

π

n

)
,sin

(
π

n

))
, n = 1, · · · ,N−1,

~c0 = (1,0),
~cN = (−1,0).

Definition 2. The state space subset E0 is defined as

E0 :=
{
~c±1, · · · ,~c±(N−1)

}
.

If the space is isotropic, then it is reasonable to require that the probability of the particle turning left or right be identical.
Furthermore, we assume that the probability of turning does not depend on the specific time step, i.e. that the Markov process is
homogeneous.

Definition 3. The Markov chain is the stochastic process {X(k) : k ∈ N} where the reorientation probabilities are given by

P(X(k+1) =~cm | X(k) =~cn) := P(θ := arg(~cn,~cm)) ,

where P(θ) = P(−θ) for 0 <| θ |< π , and the initial condition X(0) =~c0.

We will use the following shorthand notation: P(0) := p0, P(π

n ) = P(−π

n ) := pn, and P(π) := pN .

Definition 4. The rotation matrix An is given by

An =

(
cos
(

π

n

)
−sin

(
π

n

)
sin
(

π

n

)
cos
(

π

n

) ) ,

such that

An

(
1
0

)
=

(
cos
(

π

n

)
sin
(

π

n

) )=~cn

and

An

(
cos(φ)
sin(φ)

)
=

(
cos
(

π

n

)
cos(φ)− sin

(
π

n

)
sin(φ)

sin
(

π

n

)
cos(φ)+ cos

(
π

n

)
sin(φ)

)
=

(
cos(π

n +φ)
sin(π

n +φ)

)
.

Definition 5. The velocity autocorrelation function (VACF) is given by

gk = 〈X(0) ·X(k)〉= ∑
~v∈E

(~c0 ·~v)Pk (~v)

Theorem 2. The velocity autocorrelation function of a particle whose orientations are given by a homogeneous, symmetric
Markov chain is either delta-correlated, i.e. gk = δ0,k, where δ is the Kronecker delta; alternating, i.e. gk = (−1)kak, a ∈ R+;
or exponentially decaying, i.e. gk = eαk, α ≤ 0.

Proof. The proof is by induction.

g1 = ∑
~v∈E

(~c0 ·~v)P(~v) = ∑
~v=~c0,~cN

(~c0 ·~v)P(~v)+ ∑
~v∈E0

(~c0 ·~v)P(~v) = P(0)−P(π)+
N−1

∑
i=1

[
(~c0 ·~ci)P

(
π

i

)
+(~c0 ·~c−i)P

(
−π

i

)]
p0− pN +

N−1

∑
i=1

[
cos
(

π

i

)
pi + cos

(
−π

i

)
pi

]
= p0− pN +2

N−1

∑
i=1

cos
(

π

i

)
pi := a.

Using the Chapman-Kolmogorov equation, we can calculate the VACF at the time step k+1

gk+1 = ∑
~v∈E

(~c0 ·~v)Pk+1(~v) = ∑
~v∈E

(~c0 ·~v) ∑
~u∈E

Pk(~u)P(~v |~u) = ∑
~u∈E

Pk(~u) ∑
~v∈E

(~c0 ·~v)P(~v |~u).
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We now expand the second sum on the right hand side of the equation

∑
~v∈E

(~c0 ·~v)P(~v |~u) =(~c0 ·~u)p0− (~c0 ·~u)pN +
N−1

∑
i=1

[(~c0 ·Ai~u)P(Ai~u |~u)+(~c0 ·A−i~u)P(A−i~u |~u)]

= (~c0 ·~u)p0− (~c0 ·~u)pN +
N−1

∑
i=1

[(
cos
(

π

i

)
−sin

(
π

i

) )T

~upi +

(
cos
(

π

i

)
sin
(

π

i

) )T

~upi

]

= (~c0 ·~u)p0− (~c0 ·~u)pN +
N−1

∑
i=1

(
2cos

(
π

i

)
0

)T

~upi

= (~c0 ·~u)p0− (~c0 ·~u)pN +2
N−1

∑
i=1

cos
(

π

i

)
(~c0 ·~u)pi

= (~c0 ·~u)

[
p0− pN +2

N−1

∑
i=1

cos
(

π

i

)
pi

]
= (~c0 ·~u)a.

Inserting this expression back into the VACF yields

gk+1 = ∑
~u∈E

Pk(~u) ∑
~v∈E

(~c0 ·~v)P(~v |~u) = ∑
~u∈E

Pk(~u)(~c0 ·~u)a = gka = aka = a(k+1).

We can rewrite a as a = ∑θ p(θ)cosθ , where θ = arg(~c0,~cn), ∀~cn ∈ E . Using the fact that 0≤ p(θ)≤ 1 and ∑θ p(θ) = 1, we
have

−1≤ cos(θ)≤ 1 =⇒ −p(θ)≤ p(θ)cos(θ)≤ p(θ) =⇒ −1≤∑
θ

p(θ)cosθ ≤ 1 ∴−1≤ a≤ 1.

We have three cases:

• −1≤ a < 0, then a =−1 | a | and gk = ak = (−1)k | a |k.

• a = 0, then gk = ak = 0, k 6= 0.

• 0 < a≤ 1 then gk = ak = ek ln(a) = eαk, where α = ln(a). 0 < a≤ 1 =⇒ −∞ < α ≤ 0.

Time correlated random walk: rule derivation for different dimensions and geometries
One dimension
We will now sketch our method for obtaining the reorientation probabilities Pik,k in 1D. We start by expanding g(k) for the first
two time steps after kτ = t ≥ ∆ (see Eq. (16)) for a 1D lattice. We will denote by the subscript f the lattice direction parallel to
the original orientation of the particle. Similarly, the subscript r denotes the direction opposite to the original orientation of the
particle. Numerical subscripts denote the time step at which the reorientation probability is evaluated.

Time step k = 1 Only two trajectories are possible after one time step. Their probabilities are given by Pf ,1 and Pr,1. The
normalization condition for these probabilties reads

Pf ,1 +Pr,1 = 1. (S42)

We now expand the VACF:

1

∑
i=1

Pik,k
[
~ci0 ·~cik

]
= Pf ,1−Pr,1 = g(1). (S43)

We can substitute Pr,1 from Supplementary Eq. (S42) into Supplementary Eq. (S43)

Pf ,1−Pr,1 = Pf ,1− (1−Pf ,1) = 2Pf ,1−1 = g(1).

Rearranging terms we obtain the probability for having the same orientation as originally to

Pf ,1 =
1+g(1)

2
. (S44)
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Substituting Supplementary Eq. (S44) into Supplementary Eq. (S42) we obtain the probability for the particle to turn around
after the first time step,

Pr,1 =
1−g(1)

2
. (S45)

After inspection of Supplementary Eqs. (S44) and (S45), and recalling that in the 1D lattice c1 = 1 and c2 = −1, both
probabilities can be written as a single expression,

Pi1,1 =
1+
[
ci0 · ci1

]
g(1)

2
, (S46)

where i is a placeholder variable for either f or r.

Time step k = 2 After two time steps, we have four different possible paths for the particle, with four different probabilities.
If we assume the probabilities at each time can be written as Pf f = Pf ,1Pf ,2, we can expand the VACF to obtain:

Pf ,1Pf ,2−Pf ,1Pr,2 +Pr,1Pf ,2−Pr,1Pr,2 =
(
Pf ,2−Pr,2

)(
Pf ,1 +Pr,1

)
= g(2),

which by employing Supplementary Eq. (S42) can simplified to:

Pf ,2−Pr,2 = g(2). (S47)

Given that the probabilities in the previous time step were normalized, it is sufficient to require that the probabilities in the
current time step be normalized:

Pf ,2 +Pr,2 = 1. (S48)

Inspecting Supplementary Eqs. (S47) and (S48) and comparing them with Supplementary Eqs. (S42) and (S43) we can see that
they are identical except for the evaluation of g(k). Therefore, for the second time step it holds that

Pi2,2 =
1+
[
ci0 · ci2

]
g(2)

2
. (S49)

Any k It is easy to see that for further times we can always assume that the probabilities are uncorrelated so that only the last
orientation in the particle’s orientation history is relevant for the calculation. If we do, Supplementary Eqs. (S46) and (S49) can
be generalized for any time step k in the following way:

Pik,k =
1+
[
ci0 · cik

]
g(k)

2
. (S50)

Two dimensions: Triangular lattice
We will repeat the calculation we did in 1D now in 2D for two different lattice geometries to identify possible dependencies on
the lattice dimension and/or geometry.

Time step k = 1 We have three possible lattice directions with lattice vectors given by either ~c1 = (1,0), ~c2 =
(
− 1

2 ,
√

3
2

)
,

~c3 =
(
− 1

2 ,−
√

3
2

)
, or ~c1 =

(
1
2 ,
√

3
2

)
, ~c2 = (−1,0), ~c3 =

(
1
2 ,−

√
3

2

)
on alternating nodes. In the first time step there are three

possible paths given by Pr,1, Pa,1, and Pu,1, where Pr,1 is the probability to reverse orientation. The normalization condition is, in
this case, given by

Pr,1 +Pu,1 +Pa,1 = 1, (S51)

while the VACF is given by

1
2
(Pu,1 +Pa,1)−Pr,1 = g(1). (S52)

We need to make an assumption to continue, as there are more variables than equations. We assume that the probability of
turning left or right is identical,

Pu,1 = Pa,1 := Pf ,1. (S53)
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Under this assumption we can rewrite Supplementary Eq. (S51) as

Pr,1 +2Pf ,1 = 1, (S54)

and Supplementary Eq. (S52) as

Pf ,1−Pr,1 = g(1). (S55)

Substituting Pf ,1 from Supplementary Eq. (S55) into Supplementary Eq. (S54) we obtain

Pr,1 +2(Pr,1 +g(1)) = 3Pr,1 +2g(1) = 1,

which, after rearranging, gives the expression for the probability of the particle to go back:

Pr,1 =
1−2g(1)

3
. (S56)

Using Supplementary Eq. (S56) in Supplementary Eq. (S54) we obtain the probability

Pf ,1 =
1+g(1)

3
. (S57)

Examining Supplementary Eqs. (S53), (S56) and (S57) we can summarize them as

Pi1,1 =
1+2

[
~ci0 ·~ci1

]
g(1)

3
. (S58)

Time step k = 2 In this case there are 9 different possible orientation histories with 9 different probabilities. If we now denote
by f and r the lattice directions parallel and antiparallel to the original particle orientation, respectively, and by u and a the
remaining lattice directions and assume that the probabilities are uncorrelated, we require that probabilites at the present time
step are normalized:

Pu,2 +Pa,2 +Pf ,2 = 1, (S59)

while the VACF has the form

Pu,1Pf ,2−
1
2

Pu,1Pu,2−
1
2

Pu,1Pa,2 +Pa,1Pf ,2

− 1
2

Pa,1Pu,2−
1
2

Pa,1Pa,2 +Pr,1Pf ,2−
1
2

Pr,1Pu,2−
1
2

Pr,1Pa,2

=

[
Pf ,2−

1
2
(Pu,2 +Pa,2)

]
(Pu,1 +Pa,1 +Pr,1) = g(2),

which, by Supplementary Eq. (S51), is simplified to:

Pf ,2−
1
2
(Pu,2 +Pa,2) = g(2). (S60)

To continue, we impose the isotropy condition Supplementary Eq. (S53) denoting by Pr,2 the probabilities Pu,2 and Pa,2. With
these assumptions the normalization condition reads

Pf ,2 +2Pr,2 = 1, (S61)

while the VACF is now

Pf ,2−Pr,2 = g(2). (S62)

Inserting Pf ,2 from Supplementary Eq. (S61) into Supplementary Eq. (S62) we obtain the probability Pr,2:

Pr,2 =
1−g(2)

3
(S63)

and, using the normalization condition Supplementary Eq. (S61) we obtain the probability Pf ,2:

Pf ,2 =
1+2g(2)

3
. (S64)

These probabilities can be written in the general form

Pi2,2 =
1+2

[
~ci0 ·~ci2

]
g(2)

3
. (S65)
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Any k From Supplementary Eqs. (S58) and (S65) we can see that for any further time step k and making the same assumptions
as before the probabilities are given by

Pik,k =
1+2

[
~ci0 ·~cik

]
g(k)

3
. (S66)

Two dimensions: Square lattice
Time step k = 1 There are four possible lattice directions with lattice vectors ~c1 = (1,0), ~c2 = (0,1), ~c3 = (−1,0), and
~c4 = (0,−1). Therefore there are four possible probabilities, so the normalization condition reads

Pr,1 +Pf ,1 +Pu,1 +Pa,1 = 1, (S67)

where Pu,1 and Pa,1 are the probabilities of going in the two directions orthogonal to the original orientation of the particle. We
now expand the VACF to obtain

Pf ,1−Pr,1 = g(1). (S68)

Right from the start we have more variables than equations, so we need to make one more assumption in order to continue with
the derivation. To simplify we assume the following:

Pu,1 = Pa,1 :=
1
4
. (S69)

With this assumption the normalization condition becomes

Pf ,1 +Pr,1 =
1
2
. (S70)

Inserting Supplementary Eq. (S70) into Supplementary Eq. (S68) we obtain

Pf ,1− (
1
2
−Pf ,1) = 2Pf ,1−

1
2
= g(1).

Rearranging terms we obtain the probability

Pf ,1 =
1+2g(1)

4
. (S71)

Inserting Supplementary Eq. (S71) into Supplementary Eq. (S70) we obtain the remaining probability

Pr,1 =
1−2g(1)

4
. (S72)

Supplementary Equations (S69), (S71) and (S72) can then be summarized as

Pi1,1 =
1+2

[
~ci0 ·~ci1

]
g(1)

4
. (S73)

Time step k = 2 There are now 16 different possible histories for the traveling particle. As before we assume that the
probabilities are uncorrelated which, together with Supplementary Eq. (S67), allows us to write the normalization condition as

Pr,2 +Pf ,2 +Pu,2 +Pa,2 = 1, (S74)

and the VACF now is

Pf ,1Pf ,2 +Pu,1Pf ,2 +Pr,1Pf ,2 +Pa,1Pf ,2−
(Pf ,1Pr,2 +Pu,1Pr,2 +Pr,1Pr,2 +Pa1Pr,2) =(

Pf ,2−Pr,2
)(

Pf ,1 +Pu,1 +Pr,1 +Pa,1
)
= g(2),

which, by using Supplementary Eq. (S67), is simplified to

Pf ,2−Pr,2 = g(2). (S75)

We see that Supplementary Eqs. (S67) and (S74), and (S68) and (S75) are practically identical. Therefore, by making the same
assumptions, we arrive at the following expression for the probabilities at k = 2:

Pi2,2 =
1+2

[
~ci0 ·~ci2

]
g(2)

4
. (S76)
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Any k If we continue making the assumptions we have done until now, the probabilities can be generalized in a straightforward
way as

Pik,k =
1+2

[
~ci0 ·~cik

]
g(k)

4
. (S77)

Three dimensions: cubic lattice
Time step k = 1 In this case we have six lattice directions given by ~c1 = (1,0,0), ~c2 = (0,1,0), ~c3 = (0,0,1), ~c4 = (−1,0,0),
~c5 = (0,−1,0), and ~c6 = (0,0,−1). We denote the lattice direction parallel to the initial orientation with the subindex f , the
contrary direction by r and the rest by u, a, d, and s. The normalization condition is

Pf ,1 +Pu,1 +Pr,1 +Pd,1 +Pa,1 +Ps,1 = 1. (S78)

The VACF is given by

Pf ,1−Pr,1 = g(1). (S79)

Similarly as in the case of the square lattice, we impose the following condition which allows deriving the reorientation
probabilities:

Pu,1 = Pa,1 = Ps,1 = Pd,1 =
1
6
, (S80)

which enables us to simplify the normalization condition in the following way:

Pf ,1 +Pr,1 =
1
3
. (S81)

Using Supplementary Eq. (S81) to substitute Pr,1 into Supplementary Eq. (S79) we obtain

Pf ,1− (
1
3
−Pf ,1) = 2Pf ,1−

1
3
= g(1),

which, after rearranging terms yields the probability

Pf1 =
1+3g(1)

6
. (S82)

Now, using Supplementary Eq. (S81) we can obtain the remaining probability

Pr,1 =
1−3g(1)

6
. (S83)

Examining Supplementary Eqs. (S80), (S82) and (S83) we arrive at the general expression

Pi1,1 =
1+3

[
~ci0 ·~ci1

]
g(1)

6
. (S84)

Any k As done before we can continue the process for further times and, making the same assumptions, we arrive at an
equation as Supplementary Eq. (S84) for any time k:

Pik,k =
1+3

[
~ci0 ·~cik

]
g(k)

6
. (S85)

Any dimension, any lattice geometry, any time
Now that probabilities were derived for several dimensions, geometries, and times, we can see from Supplementary Eqs. (S50),
(S66), (S77) and (S85) that the general form of the probabilities is given by

Pik,k =
1+d

[
~ci0 ·~cik

]
g(k)

b
, (S86)

where d is the spatial dimension and b is the number of nearest neighbors.
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MSD of the piecewise process
We will now calculate the MSD using probabilities such that the VACF is a power-law decaying piecewise function defined as

g(t) =

{
1 t ≤ t?

C0
(

∆

t

)φ
t > t?

, (S87)

where t? is such that C0
(

∆

t?
)φ

= 1. It is straightforward to see that the probabilities which define such a VACF obey

Pik,k =

{
δi,i0 k ≤ ω

1+d[~ci0 ·~cik ]g(k)
b k > ω

(S88)

where i0 is the index of the velocity channel the particle started in and ω is such that t? = ωτ . It is easy to see that in the first ω

time steps the MSD is defined by 〈
r2〉(k) = k2

ε
2,

or, using the definition of the particle speed and taking the limit τ → 0:〈
r2〉(t) = (vt)2. (S89)

We will now calculate the MSD for time steps greater than ω . The calculation will be made for a 1D lattice, but the results are
identical for any dimension and lattice geometry. To ease notation, we will omit any subindices refering to time steps k ≤ ω , as
we know that, given Supplementary Eq. (S88), only those trajectories where the first ω orientations of the particle are identical
to the original orientation of the particle have non-zero probabilities.

ω +1 At the first time step after ω time steps have elapsed, we find that the MSD is given by〈
r2〉(ω +1) = r2

f Pf ,ω+1 + r2
r Pr,ω+1,

where the displacements are r2
f = (ω +1)2ε2 and r2

r = (ω−1)2ε2. Using Supplementary Eq. (S88) and substituting the square
displacements we obtain〈

r2〉(ω +1) = (ω +1)2
ε

2
[

1+g(ω +1)
2

]
+(ω−1)2

ε
2
[

1−g(ω +1)
2

]
=

ε2

2
{
(ω2 +2ω +1)[1+g(ω +1)]+(ω2−2ω +1)[1−g(ω +1)]

}
=

ε2

2
{

2ω
2 +2+2ω[1+g(ω +1)−1+g(ω +1)]

}
which reduces to〈

r2〉(ω +1) = ε
2[ω2 +1+2ωg(ω +1)]. (S90)

ω +2 Now, the MSD can be expanded in the following way:〈
r2〉(ω +2) = ε

2
{
(ω +2)2

[
1+g(ω +1)

2

][
1+g(ω +2)

2

]
+ω

2
[

1+g(ω +1)
2

][
1−g(ω +2)

2

]
+ω

2
[

1−g(ω +1)
2

][
1+g(ω +2)

2

]
+(ω−2)2

[
1−g(ω +1)

2

][
1−g(ω +2)

2

]}
ε2

4
{
(ω2 +4ω +4)[1+g(ω +1)+g(ω +2)+g(ω +1)g(ω +2)]

+ω
2[1+g(ω +1)−g(ω +2)−g(ω +1)g(ω +2)]

+ω
2[1−g(ω +1)+g(ω +2)−g(ω +1)g(ω +2)]

+(ω2−4ω +4)[1−g(ω +1)−g(ω +2)+g(ω +1)g(ω +2)]
}
,

which reduces to:〈
r2〉(ω +2) = ε

2{
ω

2 +2+2g(ω +1)g(ω +2)+2ω[g(ω +1)+g(ω +2)]
}
. (S91)
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Any k We can proceed for further k and will arrive at the following expression for any k > ω:

〈
r2〉(ω + k) = ε

2

[
ω

2 + k+2
k

∑
i=1

k

∑
j=i

g(ω + i)g(ω + j)

−2
k

∑
i=1

g2(ω +1)+2ω

k

∑
i=1

g(ω + i)

] (S92)

which by using the definition of the diffusion coefficient and particle speed can be converted to

〈
r2〉(ω + k) = 2dD

[
kτ−2

k

∑
i=1

g2(ω + i)τ

]
+ v2

[
2

k

∑
i=1

k

∑
j=i

g(ω + i)g(ω + j)τ2

+(ωτ)2 +2ωτ

k

∑
i=1

g(ω + i)τ

]

which in the limit τ → 0 is〈
r2〉(t) = 2dD

[
(t− t?)−2

∫ t

t?
g2(τ)dτ

]
+ v2

[
2
∫ t

t?

∫ t

τ

g(τ)g(k)dkdτ + t?2 +2t?
∫ t

t?
g(τ)dτ

]
.

(S93)

Combining Supplementary Eqs. (S89) and (S93) we obtain the MSD of a particle with a piecewise power-law decaying VACF:

〈
r2〉(t) =


(vt)2 t ≤ t?,

2dD
[
(t− t?)−2

∫ t

t?
g2(τ)dτ

]
+ v2

[
2
∫ t

t?

∫ t

τ

g(τ)g(k)dkdτ + t?2 +2t?
∫ t

t?
g(τ)dτ

] t > t?.
(S94)

Generalized time-correlated random walk: rule derivation
We maximize the caliber

C =−∑
Γ

PΓ lnPΓ, (S95)

subject to observing a certain VACF, which translates into the Lagrange multiplier problem

C̃ [PΓ] =−∑
Γ

PΓ lnPΓ +
k

∑
i=1

β (i)

[
∑
Γ

PΓ

(
~cn0 ·~cni

)
−g(i)

]
+λ

(
∑
Γ

PΓ−1

)
, (S96)

This yields the trajectory probabilites

PΓ =
1
Z

exp

[
k

∑
i=1

β (i)
(
~cn0 ·~cni

)]
, (S97)

where Z = exp(1−λ ) is called the dynamical partition function which, by optimizing the functional with respect to λ (i.e.,
∂ C̃
∂λ

= 0), is given by Z = ∑Γ exp
[
∑

k
i=1 β (i)

(
~cn0 ·~cni

)]
. Optimizing with respect to β (i) yields our original constraint

g(k) = ∑
Γ

PΓ

(
~cn0 ·~cni

)
. (S98)

Solving for β (i) using Supplementary Eqs. (S97) and (S98) can be quite challenging, so we expand PΓ in a Taylor series
around β (i) = 0, which reduces to g(k)≈ ∑Γ

1
Z

[
1+∑

k
i=0 β (i)

(
~cn0 ·~cni

)](
~cn0 ·~cnk

)
, where the dynamical partition function is

14/17



simplified as

Z ≈∑
Γ

[
1+

k

∑
i=0

β (i)
(
~cn0 ·~cni

)]
= bk +∑

Γ

k

∑
i=1

β (i)
(
~cn0 ·~cni

)
= bk +

k

∑
i=1

β (i)∑
Γ

(
~cn0 ·~cni

)
= bk +

k

∑
i=1

β (i)∑
Γ

cosθi = bk,

where b is the number of lattice directions and θi is the angle between the original particle orientation and the particle orientation
at time step i. ∑Γ cosθi = 0 because the lattice directions and hence the possible particle orientations are symmetrically and
homogeneously distributed. Substituting Z, using the same notation as previously, employing trigonometric identities, and
denoting the spatial dimension by d, we proceed with the calculation:

g(k)≈ b−k

[
∑
Γ

cosθk +∑
Γ

k

∑
i=1

β (i)cosθi cosθk

]
= b−k

∑
Γ

k

∑
i=1

β (i)cosθi cosθk = b−k
k

∑
i=1

∑
Γ

β (i)cosθi cosθk

= b−k

[
β (1)∑

Γ

cosθ1 cosθk +β (2)∑
Γ

cosθ2 cosθk + · · ·+β (k−1)∑
Γ

cosθk−1 cosθk +β (k)∑
Γ

cos2
θk

]

= b−k
β (k)∑

Γ

cos2
θk =

β (k)
2bk ∑

Γ

[1+ cos(2θk)] =
β (k)
2bk

[
bk +∑

Γ

cos(2θk)

]
=

β (k)
2bk

[
bk +

bk

d
(2−d)

]
=

β (k)
2

[
1+

2−d
d

]
=

β (k)
d

,

which determines the Lagrange multiplier

β (k) = dg(k). (S99)

So the generalized probabilities are finally

PΓ =
1
Z

exp

[
k

∑
i=1

dg(i)
(
~cn0 ·~cni

)]
, (S100)

which is the probability for the whole trajectory. Due to the exponential form of this probability, we can decompose the
trajectory probability into reorientation probabilities:

PΓ =
k

∏
i=1

Px,k, (S101)

given by:

Pnk,k =
1
z

exp
[
dg(k)

(
~cn0 ·~cnk

)]
, (S102)

where z is the normalization constant for the reorientation probability.

Generalized time-correlated random walk: VACF decay analysis
Eq. (28) is at first sight, different from a simple power law decay. We now assess how similar Eq. (28) is to a simple power
law decay for intermediate times. The easiest and most insightful way to achieve this is to expand both Eq. (28) and a generic
power law in a Taylor series, and to compare the Taylor coefficients. We expand around t = ∆. We will denote Eq. (28) by C(t).
The power law function has the following form:

G(t) = G1

(
∆

t

)γ

, (S103)
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where the constants G1 and γ are unspecified. First, we calculate the first two derivatives of C(t):

dC(t)
dt

=−φC0∆
φ t−φ−1 sech2

[
C0

(
∆

t

)φ
]

(S104a)

d2C(t)
dt2 = φC0∆

φ t−2φ−2 sech2

[
C0

(
∆

t

)φ
]{

(φ +1)tφ −2φC0∆
φ tanh

[
C0

(
∆

t

)φ
]}

, (S104b)

with which we can calculate its Taylor series up to the second order term:

C(t) = tanh(C0)−
φC0

∆
sech2 (C0)(t−∆)+

1
2!

φC0 sech2 (C0)

∆2 {1+φ [1−2C0 tanh(C0)]}(t−∆)2 +O(t3).

(S105)

We now proceed in the same way with the power law:

dG(t)
dt

=−G1∆
γ
γt−γ−1 (S106a)

d2G(t)
dt2 = G1∆

γ
γ(1+ γ)t−γ−2 (S106b)

and expand in a Taylor series around t = ∆:

G(t) = G1−
G1γ

∆
(t−∆)+

1
2!

G1γ

∆2 (1+ γ)(t−∆)2 +O(t3). (S107)

To determine G1 and γ we equate the zeroth and first order terms of Supplementary Eqs. (S105) and (S107), which yields

G1 = tanh(C0) (S108a)

γ = φC0
sech2 (C0)

tanh(C0)
, (S108b)

so that the Taylor series expansion is determined by

G(t) = tanh(C0)−
φC0

∆
sech2 (C0)(t−∆)+

1
2!

φC0 sech2 (C0)

∆2

[
1+φC0

sech2 (C0)

tanh(C0)

]
(t−∆)2 +O(t3).

(S109)

To estimate the similarity between both decays, we calculate the difference between Supplementary Eqs. (S105) and (S109) up
to second order terms:

C(t)−G(t)≈ 1
2!

φC0 sech2 (C0)

∆2 {1+φ [1−2C0 tanh(C0)]}(t−∆)2−

1
2!

φC0 sech2 (C0)

∆2

[
1+φC0

sech2 (C0)

tanh(C0)

]
(t−∆)2 = (t−∆)2·

1
2!

φC0 sech2 (C0)

∆2

{
1+φ [1−2C0 tanh(C0)]−1−φC0

sech2 (C0)

tanh(C0)

}
= (t−∆)2 1

2!
φ 2C0 sech2 (C0)

∆2

[
1−2C0 tanh(C0)−C0

sech2 (C0)

tanh(C0)

]
= (t−∆)2 1

2!
φ 2C0 sech2 (C0)

∆2

{
1−C0

[
2sinh(C0)

cosh(C0)
− 1

cosh(C0)sinh(C0)

]}
= (t−∆)2 1

2!
φ 2C0 sech2 (C0)

∆2

{
1−C0

[
2sinh2(C0)+1

cosh(C0)sinh(C0)

]}
which, after using hyperbolic identities, can be simplified to

C(t)−G(t)≈ (t−∆)2 1
2!

φ 2C0 sech2 (C0)

∆2 [1−2C0 coth(2C0)] ∝

(
φ

∆

)2

. (S110)
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LGCA simulations
Persistent random walk
Simulations were performed with only one particle with the reorientation probability given by Eq. (10) whose displacement and
orientation were tracked at every time step. The lattice spacing was set to ε = 0.25, and the time step to τ = 0.015625. The
total simulation consisted of 100 time steps. The sensitivity (related to the internal force required for reorientation) was varied
from β = 3 to β = 5. Simulations were repeated 1000 times for each sensitivity in order to obtain statistically relevant results.
Simulation results for low and high sensitivities are shown in Fig. 5i.

As expected, correlations die off more slowly with increasing sensitivity. On the other hand, the MSD quickly starts
behaving linearly, except for times close to zero, where it behaves almost ballistically. The region where displacement is almost
ballistic increases with increasing sensitivity.

Additionally, we observe that the derived continuous time expressions agree perfectly with the discrete LGCA simulations.

Time-correlated random walk
Simulations were performed with only one particle with the reorientation probability given by Eq. (18). The lattice spacing was
set to ε = 0.25, and the time step to τ = 0.015625. The constant C0 was set to 0.5, and the crossover time was equal to the time
step length, ∆ = τ = 0.015625. The total simulation consisted of 1000 time steps. Three different exponents were evaluated:
φ = 0.1, φ = 1, and φ = 9. Simulations were repeated 1000 times for each exponent, in order to obtain statistically relevant
results. Simulation results for small and large exponents are shown in Fig. 5ii, as well as a plot of Eqs. (16) and (22) (integrated
with MATLAB). We can see that Eqs. (16) and (22) match the simulation data perfectly. We also observe that for low values of
the exponent φ the particle moves superdiffusively while for large values the particle diffuses normally.

Generalized time-correlated random walk
Simulations were performed with only one particle with probabilities given by Eq. (18). The lattice spacing was set to ε = 0.25
and the time step to τ = 0.015625. The constant C0 was set to 0.5 and the crossover time was equal to the time step length,
∆ = τ = 0.015625. The total simulation consisted of 100 time steps. Two different exponents were evaluated, φ = 0.1 and
φ = 1. Simulations were repeated 1000 times for each exponent, in order to obtain statistically relevant results. Simulation
results for small, and large exponents are shown in Fig. 5iii as well as a plot of Eqs. (28) and (29) (integrated with MATLAB).
We can see that Eq. (28) and (29) match the simulation data perfectly. Comparing Figs. 5ii and 5iii, it is evident that the VACF
in both cases is quite similar, as expected given the small value of ∆ used in these simulations. We also observe that for low
values of the exponent φ the particle moves superdiffusively while for large values the particle diffuses normally.
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